COMPLEX SYMMETRIC COMPOSITION OPERATORS
INDUCED BY LINEAR FRACTIONAL MAPS

YONG-XIN GAO AND ZE-HUA ZHOU∗

Abstract. In this paper we give the answers to two open questions on complex symmetric composition operators. By doing this, we give a complete description of complex symmetric composition operators whose symbols are linear fractional.

1. Introduction

A bounded operator T on a complex Hilbert space \mathcal{H} is called complex symmetric if there exists a conjugation C such that $T = CT^*C$. In this context, a conjugation is a mapping $C : \mathcal{H} \rightarrow \mathcal{H}$ that satisfies the following conditions:

(i) $C(\lambda x + \mu y) = \overline{\lambda} Cx + \overline{\mu} Cy$ for all $x, y \in \mathcal{H}$ and $\lambda, \mu \in \mathbb{C}$;
(ii) $\langle Cx, Cy \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in \mathcal{H}$;
(iii) $C^2 = I$ is the identity on \mathcal{H}.

The operator T may also be called C-symmetric if T is complex symmetric with respect to a specific conjugation C. For more details about complex symmetric operators, one may turn to [6], [7], and [8].

In this paper, we are particularly interested in the complex symmetry of composition operators induced by analytic self-maps of the unit disk D on the complex plane. This subject was first considered by Garcia and Hammond in [5].

Recall that, for each analytic self-map φ of the unit disk D, the composition operator C_{φ} given by

$$C_{\varphi}f = f \circ \varphi$$

is always bounded on $H^2(D)$. Here, the Hardy-Hilbert space $H^2(D)$ is the set of analytic functions on D such that

$$||f||^2 = \sup_{0 < r < 1} \int_0^{2\pi} |f(re^{i\theta})|^2 \frac{d\theta}{2\pi} < \infty.$$

Several simple examples of complex symmetric composition operators on $H^2(D)$ arise immediately. For example, every normal operator is complex symmetric (see [6]), so when $\varphi(z) = sz$ with $|s| \leq 1$, C_{φ} is normal hence complex symmetric on $H^2(D)$. Also, Theorem 2 in [8] states that each operator satisfying a polynomial equation of order 2 is complex symmetric. So when φ is an involutive automorphism, we have $C_{\varphi}^2 = I$, thus C_{φ} is complex symmetric on $H^2(D)$. In [9] Waleed

Mathematics Subject Classification. primary 47B33, 46E20; Secondary 47B38, 46L40, 32H02.

Key words and phrases. Composition operator; Complex symmetry; Elliptic automorphism.

Corresponding author.

This work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11771329; 11371276).
Noor found the conjugation C such that C_φ is C-symmetric when φ is an involutive automorphism.

However, these examples are somewhat trivial, so it is reasonable to wonder whether there are other examples of complex symmetric composition operators on $H^2(D)$. The first step is, of course, to determine the complex symmetric composition operators induced by automorphisms. Bourdon and Waleed Noor considered this problem in [2]. The next proposition is Proposition 2.1 in [2].

Proposition 1.1. Let φ be a self-map of D. If C_φ is complex symmetric on $H^2(D)$, then φ has a fixed point in D.

Particularly, if φ is either a parabolic or a hyperbolic automorphism, then C_φ cannot be complex symmetric on $H^2(D)$.

Thanks to this proposition, we only need to investigate the elliptic automorphisms of the unit disk D. It turns out that things depend much on the orders of the automorphisms. Most of the cases are settled by the following proposition, which is one of the main results in [2].

Proposition 1.2. Let φ be an elliptic automorphism of order q. If $q = 2$, then C_φ is always complex symmetric on $H^2(D)$. If $4 \leq q \leq \infty$, then C_φ is complex symmetric on $H^2(D)$ only if φ is a rotation.

However, the order 3 elliptic case remains as an open question, which is posed by Bourdon and Waleed Noor in [2]:

Question A. Is C_φ complex symmetric on $H^2(D)$ when φ is an elliptic automorphism of order 3?

We will give the answer to this question in the first part of this paper. By doing this we complete the project of finding all invertible composition operators which are complex symmetric on $H^2(D)$. More precisely, we will prove that if φ is an elliptic automorphism of order 3 and not a rotation, then the composition operator C_φ cannot be complex symmetric on $H^2(D)$. Thus we can get our Main Result A as follows. It will be given as Corollary 3.6.

Main Result A. Suppose φ is an automorphism of the unit disk D. Then C_φ is complex symmetric on $H^2(D)$ if and only if φ is either a rotation or an involutive automorphism.

This result shows that one can never find any nontrivial example of complex symmetric composition operator among the automorphisms of D. So we continue to consider the non-automorphisms.

Sungeun Jung et al. [3] proposed a non-automorphic example of composition operator which was thought to be complex symmetric, but then it was disproved by Waleed Noor in [10]. Recently, Narayan et al. [4] gave the first non-automorphic examples of complex symmetric composition operators. Their examples are as follows, which is Theorem 2.10 in [4].

Proposition 1.3. Let $\varphi_1(z) = az + c$ and $\varphi_2(z) = az/(1-cz)$ be analytic self-maps of D and neither of them is an automorphism of D. Then C_{φ_1}, respectively C_{φ_2}, is complex symmetric on $H^2(D)$ if and only if φ_1, respectively φ_2, has no fixed point on the boundary of D.

Yet their examples are linear fractional. Then they asked at the last part of their paper: What about the other linear fractional self-maps of D? Can any of them induce a complex symmetric composition operator?

Question B. Find all the linear fractional self-maps of D that can induce complex symmetric composition operators on $H^2(D)$.

In fact, Garcia and Hammond [5] gave a necessary condition for a composition operator to be complex symmetric; that is, any complex symmetric composition operator must have univalent symbol. Note that all linear fractional maps are univalent on D.

In this paper, we also answer Question B by giving a complete description of complex symmetric composition operators whose symbols are linear fractional. More precisely, we show that the examples in [4] are the only non-automorphic examples that can be found among the linear fractional maps. Recall that $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ is the Riemann sphere. Then our second main result is as follows, which is Theorem 4.7.

Main Result B. Suppose φ is a linear fractional self-maps of D and is not a constant. Then C_{φ} is complex symmetric on $H^2(D)$ if and only if at least one of the following conditions holds,

(i) the two fixed points of φ on $\hat{\mathbb{C}}$ are 0 and a point outside \overline{D};
(ii) the two fixed points of φ on $\hat{\mathbb{C}}$ are ∞ and a point in D;
(iii) φ is an involutive automorphism.

2. Preliminaries

The space we will consider throughout this paper is the Hardy space $H^2(D)$, which is a Hilbert space with the inner product

$$\langle f, g \rangle = \lim_{r \to 1-} \int_0^{2\pi} f(re^{i\theta})g(re^{i\theta}) \frac{d\theta}{2\pi}.$$

For each $w \in D$, let

$$K_w(z) = \frac{1}{1 - wz}.$$

Then $K_w \in H^2(D)$ is the evaluation functional at the point w, i.e.,

$$\langle f, K_w \rangle = f(w)$$

for all $f \in H^2(D)$. Futhermore, for each $w \in D$ and every integer $j > 0$, we can find a unique function $K_w^{[j]} \in H^2(D)$ such that

$$\langle f, K_w^{[j]} \rangle = f^{(j)}(w)$$

for all $f \in H^2(D)$. The function $K_w^{[j]}$ is called evaluation of the j-th derivative at w.

A linear fractional transformation is a map of the form

$$\varphi(z) = \frac{az + b}{cz + d}.$$

We always assume $ad - bc \neq 0$, so that φ is not a constant. Each linear fractional transformation can be regarded as a biholomorphic mapping of $\hat{\mathbb{C}}$ onto itself. We denote the set of all linear fractional transformations by $LFT(\hat{\mathbb{C}})$. Recall that each linear fractional transformation has at most two fixed points on $\hat{\mathbb{C}}$.
By $LFT(D)$ we denote the set of all linear fractional self-maps of the unit disk D, which is a subgroup of $LFT(\mathbb{C})$. The automorphisms of D are all contained in $LFT(D)$.

It is well known that the automorphisms of D fall into three categories:

- An automorphism φ is called elliptic if it has a unique fixed point in D.
- An automorphism φ is called hyperbolic if it has no fixed point in D and two distinct fixed points on the unit circle ∂D.
- An automorphism φ is called parabolic if it has no fixed point in D and one fixed point on ∂D.

Proposition 1.1 tells us that when φ is either hyperbolic or parabolic, the composition operator C_φ cannot be complex symmetric on $H^2(D)$. So we only need to consider the elliptic ones.

Definition 2.1. The order of an elliptic automorphism φ is the smallest positive integer such that $\varphi^n(z) = z$ for all $z \in D$. Here $\varphi^n = \varphi \circ \varphi \circ \cdots \circ \varphi$ denotes the n-th iterate of φ. If no such positive integer exists, then φ is said to have order ∞.

Note that if the order of an automorphism φ is one, then φ is identity on D. If φ has order two, then φ is of the form $\varphi(z) = \varphi_a(z) = \frac{a-z}{1-az}$ for some $a \in D$.

Remark 2.2. The notation φ_a will be used throughout the paper to denote the involution automorphism that exchanges 0 and a.

For the convenience of our discussion, we restate Proposition 1.3, i.e., Theorem 2.10 in [4], as follows.

Proposition 2.3. Suppose $\varphi \in LFT(D)$ is not an automorphism and either 0 or ∞ is a fixed point of φ. Then C_φ is complex symmetric on $H^2(D)$ if and only if φ has no fixed point on the unit circle ∂D.

The next lemma is a simple property of complex symmetric operators. It will be used repeatedly in this paper.

Lemma 2.4. Suppose T is complex symmetric on H with respect to a conjugation C, then $\lambda \in \mathbb{C}$ is an eigenvalue of T if and only if $\overline{\lambda}$ is an eigenvalue of T^*. Moreover, the conjugation C maps the eigenvectors subspace $\text{Ker}(T-\lambda)$ onto $\text{Ker}(T^*-\overline{\lambda})$.

Proof. One only needs to note that $T = CT^*C$ implies $T - \lambda = C(T^* - \overline{\lambda})C$.

The next lemma follows directly from the proof of Lemma 2.2 in [2].

Lemma 2.5. On $H^2(D)$ we have $C_\varphi 1 = K_a$ and $C_\varphi z^{k+1} = e_{k+1} - a e_k$. Here $e_k = K_a \varphi_a^k$ for each positive integer k.

As a corollary, we can get the eigenvectors of C_φ on $H^2(D)$ when φ is an elliptic automorphism of order 3.

Corollary 2.6. Suppose φ is an elliptic automorphism of order 3 with fixed point $a \in D$. Let $\Lambda_m = \text{Ker}(C_\varphi - \varphi'(a)^m)$ and $\Lambda_m^* = \text{Ker}(C_\varphi^* - \overline{\varphi'(a)^m})$ for $m = 0, 1, 2$, then

$$\Lambda_m = \text{span}(\varphi_a^{3j+m}; j = 0, 1, 2, \ldots)$$
and

\[\Lambda_m^* = \text{span}\{e_{3j+m} - ae_{3j+m-1}; j = 0, 1, 2, \ldots\} , \]

where \(e_{-1} = 0 \) and \(e_{k} = K_a \varphi_k^k \) for \(k = 0, 1, 2, \ldots \)

Proof. Let \(\tau = \varphi_a \circ \varphi \circ \varphi_a \). Then \(\tau \) is a rotation of order 3, that is, \(\tau(z) = \varphi'(a)z \).

So \(C_\tau z^k = \varphi'(a)^k z^k \) for \(k = 0, 1, 2, \ldots \). Moreover, since \(C_\tau^* = C_{\tau^{-1}} \) where \(\tau^{-1}(z) = \frac{\varphi(a)z}{\varphi'(a)} \), we also have \(C_\tau^* z^k = \varphi'(a)^k z^k \). Thus

\[z^k \in \text{Ker}(C_\tau - \varphi'(a)^k) \cap \text{Ker}(C_\tau^* - \varphi'(a)^k) \]

for \(k = 0, 1, 2, \ldots \).

Now by the definition of \(\tau \) we have \(C_\varphi C_\varphi_a = C_\tau C_\varphi_a \) and \(C_\varphi^* C_\varphi_a^* = C_\tau^* C_\varphi_a^* \), so

\[C_\varphi_a z^k \in \text{Ker}(C_\varphi - \varphi'(a)^k) \]

and

\[C_\varphi^*_a z^k \in \text{Ker}(C_\varphi^* - \varphi'(a)^k) \]

Since \(\varphi'(a)^3 = 1 \), one can see that

\[\text{span}\{C_\varphi_a z^{3j+m}; j = 0, 1, 2, \ldots\} \subset \Lambda_m \]

and

\[\text{span}\{C_\varphi_a^* z^{3j+m}; j = 0, 1, 2, \ldots\} \subset \Lambda_m^* \]

On the other hand, both \(C_\varphi_a \) and \(C_\varphi_a^* \) are invertible on \(H^2(D) \), so

\[\text{span}\{C_\varphi_a z^k; k = 0, 1, 2, \ldots\} = \text{span}\{C_\varphi_a^* z^k; k = 0, 1, 2, \ldots\} = H^2(D). \]

so we have

\[\Lambda_m = \text{span}\{C_\varphi_a z^{3j+m}; j = 0, 1, 2, \ldots\} \]

and

\[\Lambda_m^* = \text{span}\{C_\varphi_a^* z^{3j+m}; j = 0, 1, 2, \ldots\} \]

Finally, \(C_\varphi_a z^k = \varphi_a^k \) and Lemma 2.5 shows that \(C_\varphi_a z^k = e_k - ae_{k-1} \), hence the proof is done.

\[\square \]

Remark 2.7. Note that \(||e_j||^2 = (1 - |a|^2)^{-1} \) for \(j = 0, 1, 2, \ldots \) and \(\langle e_j, e_k \rangle = 0 \) whenever \(j \neq k \).

In what follows, we list some equations that will be used in our proofs. The first one is a well known identity which can be found everywhere. One can refer to [1], for example. If \(\varphi \) is an automorphism of \(D \), then

\[(2.1) \quad 1 - |\varphi(z)|^2 = \frac{(1 - |w|^2)(1 - |z|^2)}{|1 - \overline{w}z|^2} \]

for all \(z \in D \), where \(w = \varphi^{-1}(0) \).

If \(\varphi \) is a analytic self-map of \(D \) with a fixed point \(a \in D \), then on \(H^2(D) \) we have the following formulæ:

\[(2.2) \quad C_\varphi^* K_a = K_a; \]

\[(2.3) \quad C_\varphi^* K_{a_1}^{[1]} = \overline{\varphi'(a)} K_{a_1}^{[1]}; \]
and
\[C_\alpha^* K_a^{(2)} = \varphi'(a)K_a^{(2)} + \varphi''(a)K_a^{(1)}. \]

We omit the simple calculation here.

3. Automorphisms

In this section, we will focus on the proof of our first main result, i.e., Theorem 3.5, which assert that no elliptic automorphism of order 3 except for rotations can induce a complex symmetric composition operator on \(H^2(D) \).

Several pieces of notation, introduced in Claim 3.1, will have a consistent meaning throughout this section. In particular, \(\varphi \) will always denote an elliptic automorphism of order 3. Likewise, \(a \) will always represent the fixed point of \(\varphi \), with
\[\rho = -\frac{\pi^2}{a} \cdot \frac{1 - |a|^2}{1 - |a|^4}. \]

We will assume that \(C_\varphi \) is \(C \)-symmetric with respect to some conjugation \(C \), and finally we will show this assumption leads to a contradiction. Now we start by determining the image of a certain vector under the conjugation \(C \). We will continue to use the notation from Lemma 2.5 and Corollary 2.6.

Claim 3.1. Let \(\varphi \) be an elliptic automorphism of order 3 with fixed point \(a \in D \setminus \{0\} \). If \(C_\varphi \) is \(C \)-symmetric on \(H^2(D) \) with respect to a conjugation \(C \), then we have
\[Ce_0 = c_0 \frac{1 - \pi^3 \varphi_a^3}{1 - \rho \varphi_a^3}, \]
where \(c_0 \) is a constant and
\[\rho = -\frac{\pi^2}{a} \cdot \frac{1 - |a|^2}{1 - |a|^4}. \]

Proof. Let \(h_0 = Ce_0 \). Since \(e_0 \in \Lambda_0^* \), by Lemma 2.4 we have \(h_0 \in \Lambda_0 \). So we can suppose that
\[h_0 = \sum_{j=0}^{\infty} c_j \varphi_a^{3j}. \]

It is obvious that \(e_0 \) is orthogonal to \(\Lambda_0^* \). So by Lemma 2.4 and the fact that \(C \) is an isometry, \(h_0 \) is orthogonal to \(\Lambda_2 \). Thus \(\langle h_0, \varphi_a^{3k+2} \rangle = 0 \) for \(k = 0, 1, 2, \ldots \), so we have the following equations:

\[\sum_{j=0}^{k} c_j \pi^{3k+2-3j} + \sum_{j=k+1}^{\infty} c_j a^{3j-3k-2} = 0 \]
for \(k = 0, 1, 2, \ldots \). Replacing \(k \) by \(k + 1 \) in (3.1), we get
\[\sum_{j=0}^{k+1} c_j \pi^{3k+5-3j} + \sum_{j=k+2}^{\infty} c_j a^{3j-3k-5} = 0, \]
and hence
\[\sum_{j=0}^{k+1} c_j \pi^{3k+5-3j} a^3 + \sum_{j=k+2}^{\infty} c_j a^{3j-3k-2} = 0. \]
Combining (3.1) and (3.2), we have
\[
\sum_{j=0}^{k} c_j \rho^{2j-3} + c_{k+1}a = \sum_{j=0}^{k+1} c_j \rho^{2j-3} a^3,
\]
or we can write
\[
\sum_{j=0}^{k} c_j \rho^{2j-3} + c_{k+1}a \frac{1-|a|^4}{1-|a|^6} = 0,
\]
(3.3)
for \(k = 0,1,2,...\). By taking \(k = 1\) in (3.3), we get
\[
c_1 = \tilde{\rho} c_0
\]
where \(\tilde{\rho} = -\frac{\rho^2}{a} \cdot \frac{1-|a|^6}{1-|a|^4}\). Replacing \(k\) by \(k-1\) in (3.3), we have
\[
\sum_{j=0}^{k-1} c_j \rho^{2j-3} + c_{k}a \frac{1-|a|^4}{1-|a|^6} = 0,
\]
(3.4)
so (3.3) and (3.3) gives that
\[
c_{k+1} = \rho c_k
\]
for \(j = 1,2,3,...\), where \(\rho = -\frac{\rho^2}{a} \cdot \frac{1-|a|^6}{1-|a|^4}\). Therefore
\[
h_0 = c_0 + c_1 \sum_{j=1}^{\infty} \rho^{j-1} \phi^3_a
\]
\[
= c_0 + c_0 \frac{\tilde{\rho} \phi^3_a}{1 - \rho \phi^3_a}
\]
\[
= c_0 \frac{1 - \frac{\rho^4}{\phi^3_a}}{1 - \rho \phi^3_a}.
\]

\[
\square
\]

Claim 3.2. For the constant \(c_0\) in Claim 3.1, we have
\[
|c_0| = \frac{1}{1-|a|^4}.
\]

Proof. Let
\[
g = \frac{\rho - \phi^3_a}{1 - \rho \phi^3_a},
\]
so that \(g\) is an inner function and \(g(0) = -\frac{\phi^3_a}{\rho}\).

An easy calculation shows that \(h_0 = \gamma_1 g + \gamma_2\), where
\[
\gamma_1 = c_0 \frac{\rho^2}{a} (1 + |a|^2);
\]
\[
\gamma_2 = c_0 (1 + |a|^2).
\]
So we have
\[
||h_0||^2 = \langle \gamma_1 g + \gamma_2, \gamma_1 g + \gamma_2 \rangle
\]
\[
= |\gamma_1|^2 + |\gamma_2|^2 + 2 \Re \{ \gamma_1 \overline{\gamma_2} g(0) \}
\]
\[
= |c_0|^2 (1 - |a|^2)(1 + |a|^2)^2.
\]
On the other hand, since C is isometric, we know that
\[||h_0||^2 = ||c_0||^2 = \frac{1}{1 - |a|^4}, \]
so $|c_0| = (1 - |a|^4)^{-1}$. \hfill \qed

Claim 3.3. For the function $h_0 = Ce_0$ in the proof of Claim 3.1, we have
\[\langle h_0, \varphi^{3k} \rangle = c_0(1 - |a|^4)\rho^k \]
for $k = 0, 1, 2, \ldots$

Proof.
\[\langle h_0, \varphi^{3k} \rangle = \sum_{j=0}^{k} c_j \varphi^{3k-3j} + \sum_{j=k+1}^{\infty} c_j a^{3j-3k}. \] Comparing (3.5) with (3.1), we can get that
\[\langle h_0, \varphi^{3k} \rangle = (1 - |a|^4) \sum_{j=0}^{k} c_j \varphi^{3k-3j}. \] So (3.6), along with (3.3), shows that
\[\langle h_0, \varphi^{3k} \rangle = (1 - |a|^4) c_0 (1 - |a|^4) \rho^k = c_0(1 - |a|^4)\rho^k. \] \hfill \qed

Claim 3.4. Under the assumption of Claim 3.1, we have
\[Ce_1 = -c_0 \frac{\varphi(1 - |a|^6)}{a(1 - |a|^4)} \frac{\varphi_a(1 - \varphi_a^3 \varphi_a^3)}{(1 - \rho \varphi_a^3)^2} + \overline{\varphi h_0}. \]

Proof. Let $h_1 = Ce_1$. Since $e_1 - ae_0 \in \Lambda^*_1$, by Lemma 2.4 we have $h_1 - \overline{\varphi}_0 - e_0 \in \Lambda_1$. So we can assume that
\[h_1 = \sum_{j=0}^{\infty} b_j \varphi_a^{3j+1} + \overline{\varphi h_0}. \]
It is obvious that e_1 is orthogonal to Λ^*_1, so h_1 is orthogonal to Λ_0, which means that $\langle h_1, \varphi_a^{3k} \rangle = 0$ for $k = 0, 1, 2, \ldots$. So, by using Claim 3.3, we have the following equations:
\[\sum_{j=0}^{\infty} b_j a^{3j+1} + c_0 \overline{\varphi(1 - |a|^4)} = 0, \]
and
\[\sum_{j=0}^{k-1} b_j \overline{\varphi_a^{3k-3j-1} + \sum_{j=k}^{\infty} b_j a^{3j+1-3k} + c_0 \overline{\varphi(1 - |a|^4)} \rho^k = 0, \]
for $k = 1, 2, 3, \ldots$.

By taking $k = 1$ in (3.8) we get
\[b_0 \overline{\varphi^2} + \sum_{j=1}^{\infty} b_j a^{3j-2} + c_0 \overline{\varphi(1 - |a|^4)} \rho = 0. \]
Comparing this equation with (3.7) we have

\[b_0 a \frac{1 - |a|^4}{1 - |a|^6} + c_0 \overline{a} = 0. \]

(3.9)

Replacing \(k \) by \(k + 1 \) in (3.8), we get

\[\sum_{j=0}^{k} b_j a^{3k-3j+2} + \sum_{j=k+1}^{\infty} b_j a^{3j-2-3k} + c_0 \overline{a}(1 - |a|^4)\rho^{k+1} = 0. \]

Combining this equation with (3.8), we see that

\[\sum_{j=0}^{k-1} b_j a^{3k-3j-1} + \sum_{j=k}^{\infty} b_k a \frac{1 - |a|^4}{1 - |a|^6} + c_0 \overline{a} \rho^k = 0 \]

for \(k = 1, 2, 3, \ldots \).

Now let

\[\delta_j = -\frac{b_j a (1 - |a|^4)}{c_0 \overline{a}(1 - |a|^6)}, \]

then (3.9) and (3.10) shows that \(\delta_0 = 1, \delta_1 = \rho + \tilde{\rho}, \) and

\[\delta_{k+1} = \rho \delta_k + \tilde{\rho} \rho^k \]

for \(k = 1, 2, 3, \ldots \) Hence we can get that

\[\delta_k = \rho^k + k\tilde{\rho} \rho^{k-1} \]

for \(k = 0, 1, 2, \ldots \).

Thus we have

\[h_1 - \overline{a} h_0 = \sum_{j=0}^{\infty} b_j \varphi_{a}^{3j+1} \]

\[= -c_0 \overline{a}(1 - |a|^6) \int_{0}^{\infty} \delta_j \varphi_{a}^{3j+1} \]

\[= -c_0 \overline{a}(1 - |a|^6) \left(\int_{0}^{\infty} \rho^j \varphi_{a}^{3j+1} + \int_{0}^{\infty} j \tilde{\rho} \rho^{j-1} \varphi_{a}^{3j+1} \right) \]

\[= -c_0 \overline{a}(1 - |a|^6) \left(\frac{\varphi_{a}}{1 - \rho \varphi_{a}^3} + \frac{\tilde{\rho} \varphi_{a}^4}{(1 - \rho \varphi_{a}^3)^2} \right) \]

\[= -c_0 \overline{a}(1 - |a|^6) \left(\frac{\varphi_{a}(1 - \overline{a} \varphi_{a}^3)}{(1 - \rho \varphi_{a}^3)^2} \right). \]

Now we can prove our final result.

Theorem 3.5. If \(\varphi \) is an elliptic automorphism of order 3 with fixed point \(a \in D \setminus \{0\} \), then \(C_{\varphi} \) is not complex symmetric on \(H^2(D) \).

Proof. Suppose that \(C_{\varphi} \) is \(C \)-symmetric with respect to conjugation \(C \). Then Claims 3.1 to 3.4 hold.

Let

\[f = \frac{1 - |a|^4}{1 - |a|^6} \cdot \frac{1 - \overline{a} \varphi_{a}^3}{(1 - \rho \varphi_{a}^3)^2}, \]
Then
\[||f|| = |c_0|^{-1} \cdot ||h_1 - \overline{\alpha}h_0|| = (1 - |a|^4) ||h_1 - \overline{\alpha}h_0||. \]
A tedious calculation shows that
\[f = \beta_1 g^2 + \beta_2 g + \beta_3, \]
where
\[g = \frac{\varphi - \varphi^3 a}{1 - \rho \varphi^3}. \]
and
\[\beta_1 = \frac{(1 - |a|^4)(1 + |a|^2)^2}{1 - |a|^6} (\rho^2 - \overline{\alpha}^3 \rho) = \frac{\overline{\alpha}^4}{a^2} (1 + |a|^2); \]
\[\beta_2 = \frac{(1 - |a|^4)(1 + |a|^2)^2}{1 - |a|^6} (-2 \rho + \overline{\alpha}^3 + \overline{\alpha}^4 \rho) = \frac{\overline{\alpha}^2}{a} (1 + |a|^2) (2 + |a|^2); \]
\[\beta_3 = \frac{(1 - |a|^4)(1 + |a|^2)^2}{1 - |a|^6} (1 - \overline{\alpha}^5 \rho) = (1 + |a|^2)^2. \]
So
\[||f||^2 = \langle \beta_1 g^2 + \beta_2 g + \beta_3, \beta_1 g^2 + \beta_2 g + \beta_3 \rangle \]
\[= |\beta_1|^2 + |\beta_2|^2 + |\beta_3|^2 + 2 \Re (\beta_1 \overline{\beta_2} g(0) + \beta_2 \overline{\beta_3} g(0) + \beta_3 \overline{\beta_4} (0)^2) \]
\[= (1 + 2 |a|^2 - 2 |a|^4 - |a|^6) (1 + |a|^2). \]
On the other hand, since \(C \) is isometric,
\[||f||^2 = (1 - |a|^4)^2 ||h_1 - \overline{\alpha}h_0||^2 \]
\[= (1 - |a|^4)^2 |e_1 - \overline{\alpha}e_0|^2 \]
\[= (1 - |a|^4)^2 \frac{1 + |a|^2}{1 - |a|^2} \]
\[= (1 - |a|^4) (1 + |a|^2)^2. \]
So we have
\[(1 + 2 |a|^2 - 2 |a|^4 - |a|^6) (1 + |a|^2)^2 = (1 - |a|^4) (1 + |a|^2)^2 \]
\[2 |a|^2 - |a|^4 - |a|^6 = 0 \]
\[|a|^2 + |a|^4 = 2, \]
which is impossible since \(a \in D \).

As a corollary we can get our Main Result A. It gives a complete description of the automorphisms which can induce complex symmetric operators on \(H^2(D) \).

Corollary 3.6. Suppose \(\varphi \) is an automorphism of \(D \). Then \(C_\varphi \) is complex symmetric on \(H^2(D) \) if and only if \(\varphi \) is either a rotation or an elliptic automorphism of order two.

4. Non-automorphisms

In this section we will consider the non-automorphic cases and give the proof of our Main Result B. In light of Proposition 1.1, we will always assume that \(\varphi \in LFT(D) \) has a fixed point in \(D \).
4.1. **Linear fractional transformations that fix 0.** First we shall consider the linear fractional transformations that fix the point 0. So throughout this subsection we assume φ is of the form

$$\varphi(z) = \frac{bz}{1 - cz}$$

for $z \in D$.

Remark 4.1. It is easy to check that $\varphi(z) = \frac{bz}{1 - cz}$ is a self-map of D if and only if $|b| + |c| \leq 1$. Moreover, we may assume that φ is neither a constant nor a linear transform on D. This means neither b nor c is zero.

The next lemma gives the solution of the Schroeder’s equation for such φ.

Lemma 4.2. Suppose $b, c \neq 0$, $|b| + |c| \leq 1$, and $\varphi(z) = \frac{bz}{1 - cz}$. Let

$$\sigma(z) = \frac{z}{1 - \eta z},$$

where $\eta = \frac{c}{1 - b}$. Then $\sigma \circ \varphi = b \sigma$.

Proof. The desired result follows easily from a direct calculation. \hfill \Box

Remark 4.3. Note that $\frac{1}{\eta} = \frac{1 - b}{c}$ is the other fixed point of $\varphi(z) = \frac{bz}{1 - cz}$ on \hat{D} except for 0, so it lies outside the unit disk D.

As a corollary of Lemma 4.2, the next result shows that if C_φ is complex symmetric, then $1/\eta$ can never belong to the unit circle ∂D. In fact, it is actually a part of Theorem 2.10 in [4]. However, we still present a different proof here, because this proof will be used in Proposition 4.5 in the next subsection.

Corollary 4.4. Suppose $\varphi \in LFT(D)$ is not an automorphism and suppose that $\varphi(0) = 0$. If C_φ is complex symmetric on $H^2(D)$, then 0 is the only fixed point of φ in \hat{D}.

Proof. Assume that $\varphi(z) = \frac{bz}{1 - cz}$. Then the two fixed points of φ on \hat{D} are 0 and $(1 - b)/c$.

Since $\varphi(0) = 0$, (2.3) shows that $b = \overline{\varphi'(0)}$ is an eigenvalue of C_φ^*. Then the complex symmetry of C_φ implies that b is an eigenvalue of C_φ. However, Theorem 2.63 in [1] and Lemma 4.2 show that each eigenvector for C_φ corresponding to the eigenvalue b can only be a constant multiple of $\sigma(z) = \frac{z}{1 - \eta z}$ where $\eta = \frac{c}{1 - b}$. So we must have $\sigma \in H^2(D)$, which means that $|\eta| < 1$ since

$$\sigma(z) = \sum_{j=0}^{\infty} \eta^j z^{j+1}.$$

Therefore, $(1 - b)/c = 1/\eta$, as a fixed point of φ, lies outside \overline{D}. \hfill \Box

4.2. **Linear fractional transformations that fix $a \in D \setminus \{0\}$.** Now we turn to the general cases. We will assume in this subsection that φ is a linear fractional map with a fixed point in D other than 0. The next proposition follows from the proof of Corollary 4.4.
Proposition 4.5. Suppose \(\varphi \in \text{LFT}(D) \) is not an automorphism and \(a \in D \setminus \{0\} \) is a fixed point of \(\varphi \). If \(C_\varphi \) is complex symmetric on \(H^2(D) \), then \(a \) is the only fixed point of \(\varphi \) in \(D \).

Proof. Let \(\bar{\varphi} = \varphi_a \circ \varphi \circ \varphi_a \). Then \(\bar{\varphi}(0) = 0 \). We can assume that \(\bar{\varphi}(z) = b z / (1 - c z) \). Note that \(b = \varphi'(a) \), and the other fixed point of \(\varphi \) on \(\overline{C} \) except for \(a \) is \(\varphi_a(1 - b/c) \). Again by (2.3) we can know that \(b = \varphi'(a) \) is an eigenvalue of \(C_\varphi^* \). So the complex symmetry of \(C_\varphi \) shows that \(b = \varphi'(a) \) is an eigenvalue of \(C_\varphi \). By the proof of Corollary 4.4, we have \(|(1 - b)/c| > 1 \). Therefore \(\varphi_a(1 - b/c) \) lies outside \(D \) since \(\varphi_a \) is an automorphism of \(D \).

The next theorem shows that if the fixed point of \(\varphi \) in \(D \) is not zero and \(C_\varphi \) is complex symmetric, then the fixed point of \(\varphi \) outside \(D \) must be \(\infty \).

Theorem 4.6. Suppose \(\varphi \in \text{LFT}(D) \) is not an automorphism and \(a \in D \setminus \{0\} \) is a fixed point of \(\varphi \). If \(C_\varphi \) is complex symmetric on \(H^2(D) \), then \(\varphi \) is a polynomial of degree one with respect to \(z \).

Proof. Let \(\tilde{\varphi} = \varphi_a \circ \varphi \circ \varphi_a \). Then \(\tilde{\varphi}(0) = 0 \), hence \(\tilde{\varphi} \) is of the form

\[
\tilde{\varphi}(z) = \frac{b z}{1 - c z}.
\]

Proposition 4.5 implies that \(\eta = c/(1 - b) \) lies in \(D \). So \(\sigma(z) = z/(1 - \eta z) \) belongs to \(H^2(D) \).

Since \(\varphi \) is not an automorphism, Lemma 4.2 shows that \(\text{Ker}(C_{\varphi} - b') \) is a subspace of dimension one spanned by \(\sigma^j \). On the other hand, by using (2.2), (2.3) and (2.4) one can check that \(f_j \in \text{Ker}(C_{\varphi}^* - \overline{b'}) \) for \(j = 0, 1, 2 \). Here \(f_0 = 1, f_1 = z, f_2 = z^2 - \overline{\eta} z \).

Now let \(h_j = (1 - \eta a)^{-1} C_{\varphi_a} \sigma^j \). Since \(C_{\varphi} C_{\varphi_a} = C_{\varphi_a} C_{\varphi} \), we can conclude that \(\text{Ker}(C_{\varphi} - b') \) is a subspace of dimension one spanned by \(h_j \). Similarly, we can know that \(C_{\varphi_a}^* f_j \in \text{Ker}(C_{\varphi_a}^* - \overline{b'}) \) for \(j = 1, 2, 3 \). A simple calculation shows that

\[
h_j = \left(\frac{a - z}{1 - w_0 z} \right)^j,
\]

where

\[
w_0 = \varphi(\eta) = \frac{\overline{a} - \overline{\eta}}{1 + a \overline{\eta}}.
\]

Also Lemma 2.5 shows that

\[
\begin{align*}
C_{\varphi_a}^* f_0 &= e_0; \\
C_{\varphi_a}^* f_1 &= e_1 - a e_0; \\
C_{\varphi_a}^* f_2 &= e_2 - (a + \overline{\eta}) e_1 + \overline{\eta} a e_0,
\end{align*}
\]

where \(e_j = K_a \varphi_{a,j}^j \) for \(j = 1, 2, 3 \).

Since \(C_{\varphi} \) is complex symmetric, say \(C_{\varphi} C = CC_{\varphi}^* \) for some conjugation \(C \), Lemma 2.4 shows that there exist \(\lambda_0, \lambda_1, \lambda_2 \in \mathbb{C} \) such that

\[
Ch_j = \lambda_j C_{\varphi_a}^* f_j
\]

for \(j = 0, 1, 2 \).
Conjugation C is an isometry, so

$$|\langle Ch_0, Ch_1 \rangle| = |\langle h_0, h_1 \rangle| = |a|.$$

Therefore

$$|a| = |\langle \lambda_0 \varphi_{a} f_0, \lambda_1 \varphi_{a} f_1 \rangle|$$

$$= |\lambda_0 \lambda_1| \cdot |a| \cdot ||e_0||^2$$

$$= |\lambda_0 \lambda_1| \frac{|a|}{1 - |a|^2},$$

so $|\lambda_0 \lambda_1| = 1 - |a|^2$. However,

$$|\lambda_0| = \frac{||Ch_0||}{||C_{\varphi_{a}} f_0||} = \frac{||h_0||}{||e_0||} = \sqrt{1 - |a|^2}.$$

Therefore $|\lambda_1| = \sqrt{1 - |a|^2}$. Then we have

$$||h_1||^2 = |\lambda_1|^2 ||C_{\varphi_{a}} f_1||^2$$

$$= (1 - |a|^2) \frac{1 + |a|^2}{1 - |a|^2}$$

$$= 1 + |a|^2. \tag{4.1}$$

On the other hand, we can write

$$h_1 = \varphi_{\bar{w}_0} + (a - \bar{w}_0) K_{\bar{w}_0}.$$

So

$$||h_1||^2 = ||\varphi_{\bar{w}_0}||^2 + |a - \bar{w}_0|^2 ||K_{\bar{w}_0}||^2$$

$$= 1 + \frac{|a - \bar{w}_0|^2}{1 - |w_0|^2}. \tag{4.2}$$

Combining (4.1) and (4.2), we have

$$|a|^2 = \frac{|a - \bar{w}_0|^2}{1 - |w_0|^2}.$$

Notice that $w_0 = \varphi_{\bar{w}_0}(\eta)$, which also means $\varphi_{\bar{w}_0}(w_0) = \eta$. So by using identity (2.1), we can get

$$|a|^2 = \frac{|a - \bar{w}_0|^2}{1 - |w_0|^2}$$

$$= \frac{|\bar{w} - w_0|^2}{1 - |\eta|^2} \frac{1 - |a|^2}{1 - |a w_0|^2}$$

$$= \frac{1 - |a|^2}{1 - |\eta|^2}. \frac{|\eta|^2}{1 - |\eta|^2}.$$

Thus we see that $|\eta| = |a|$.

Now we turn to investigate the relationship between h_2 and $C_{\varphi_{a}} f_2$. It would be helpful if one could note that

$$\langle C_{\varphi_{a}} f_2 + \eta C_{\varphi_{a}} f_1, C_{\varphi_{a}} f_0 \rangle = 0$$

and

$$\langle h_2 - ah_1, h_0 \rangle = 0.$$
Therefore, again by Lemma 2.4, we can find $\lambda \in \mathbb{C}$ such that

$$C(h_2 - ah_1) = \lambda \left(C_{\varphi^*} f_2 + \overline{\eta} C_{\varphi^*} f_1 \right),$$

or we can write

$$\lambda_2 C_{\varphi^*} f_2 - \overline{\lambda_1} C_{\varphi^*} f_1 = \lambda C_{\varphi^*} f_2 + \lambda \overline{\eta} C_{\varphi^*} f_1.$$

So $-\overline{\lambda_1} = \lambda \overline{\eta}$, and hence

$$|\lambda| = |\lambda_1| = \sqrt{1 - |\omega|^2}.$$

Thus we have

$$||h_2 - ah_1||^2 = |\lambda|^2 \cdot ||C_{\varphi^*} f_2 + \overline{\eta} C_{\varphi^*} f_1||^2$$

$$= (1 - |\omega|^2)||e_2 - a e_1||^2$$

(4.3)

On the other hand,

$$h_2(z) - ah_1(z) = (1 - aw_0) \frac{z(z-a)}{(1-w_0 z)^2}.$$

If

$$\tilde{h} = (1 - aw_0) \frac{z - a}{(1-w_0 z)^2},$$

then $h_2(z) - ah_1(z) = z \tilde{h}(z)$, and hence $||h_2 - ah_1|| = ||\tilde{h}||$. A calculation shows that

$$\tilde{h} = \gamma_1 K_{\overline{\omega} \varphi} + \gamma_2 K_{\overline{a} \varphi} \varphi,$$

where

$$\gamma_1 = - \frac{(1 - aw_0)(a - \overline{w_0})}{1 - |w_0|^2};$$

$$\gamma_2 = - \frac{(1 - aw_0)^2}{1 - |w_0|^2}.$$

Again by using (2.1) and noticing that

$$|\eta| = \frac{|a - \overline{w_0}|}{1 - aw_0},$$

we have

$$|\gamma_1| = \frac{|1 - aw_0||a - \overline{w_0}|}{1 - |w_0|^2}$$

$$= |\eta| \frac{|1 - aw_0|^2}{1 - |w_0|^2}$$

$$= |\eta| \frac{1 - |a|^2}{1 - |\eta|^2} = |a|,$$

and

$$|\gamma_2| = \frac{|1 - aw_0|^2}{1 - |w_0|^2}$$

$$= \frac{1 - |a|^2}{1 - |\eta|^2} = 1.$$
So
\[
||h_2 - ah_1||^2 = (|\gamma_1|^2 + |\gamma_2|^2) \frac{1}{1 - |w_0|^2}
\]
\[= \frac{1+|a|^2}{1 - |w_0|^2}.
\]
(4.4)
Combining (4.3) with (4.4), we get \(w_0 = 0\), which means that \(\eta = \bar{a}\). Thus
\[
\varphi_a(z) = \frac{1 - \eta z}{1 - \eta}.
\]

So \(\varphi_a\), as a member in \(LFT(\mathbb{C})\), maps \(1/\eta\) to \(\infty\). Note that \(1/\eta\) is one of the fixed points of \(\tilde{\varphi}\), therefore \(\infty\) is a fixed point of \(\varphi = \varphi_a \circ \tilde{\varphi} \circ \varphi_a\). Thus \(\varphi\) is a polynomial of degree one.

\[
\square
\]

As a conclusion, we can now get our Main Result B as follows.

Theorem 4.7. Suppose \(\varphi \in LFT(D)\) is not a constant. Then \(C_\varphi\) is complex symmetric on \(H^2(D)\) if and only if at least one of the following conditions holds,

(i) the two fixed points of \(\varphi\) on \(\mathbb{C}\) are 0 and a point outside \(D\);

(ii) the two fixed points of \(\varphi\) on \(\mathbb{C}\) are \(\infty\) and a point in \(D\);

(iii) \(\varphi\) is an involutive automorphism.

Proof. If \(\varphi\) is an automorphism of \(D\), then by Corollary 3.6, \(\varphi\) satisfies (i) or (iii).

If \(\varphi\) is not an automorphism of \(D\) and \(\varphi(0) = 0\), then by Proposition 2.3, \(\varphi\) satisfies (i).

If \(\varphi\) is not an automorphism of \(D\) and the fixed point of \(\varphi\) in \(D\) is not zero, then Theorem 4.6 shows that \(\infty\) is a fixed point of \(\varphi\). Thus by Proposition 2.3, \(\varphi\) satisfies (ii).

\[
\square
\]

The theorems in this paper give a complete description of complex symmetric composition operators whose symbols are linear fractional. Nevertheless, little is known about the case where \(\varphi\) is not linear fractional. No concrete examples have yet been found of a complex symmetric composition operator whose symbol is univalent but not linear fractional. We raise this issue here as an open question.

Open Question. Is there any complex symmetric composition operator whose symbol is not linear fractional?

Acknowledgment. We are grateful to the referee for kind comments that helped to improve this paper significantly.

References

YONG-XIN GAO
School of Mathematics, Tianjin University, Tianjin 300354, P.R. China.
E-mail address: tqlgao@163.com

ZE-HUA ZHOU
School of Mathematics, Tianjin University, Tianjin 300354, P.R. China.
E-mail address: zehuazhoumath@aliyun.com; zhzhou@tju.edu.cn