TOTALLY REAL EMBDDINGS WITH PRESCRIBED POLYNOMIAL HULLS

LEANDRO AROSIO† AND ERLEND FORNÆSS WOLD††

Abstract. We embed compact C^∞ manifolds into \mathbb{C}^n as totally real manifolds with prescribed polynomial hulls. As a consequence we show that any compact C^∞ manifold of dimension d admits a totally real embedding into $\mathbb{C}^{\left\lfloor \frac{3d^2}{2} \right\rfloor}$ with non-trivial polynomial hull without complex structure.

1. Introduction

We will prove the following result.

Theorem 1.1. Let $X \subset \mathbb{C}^m$ be a totally real C^∞ submanifold of dimension $d > 1$ and let $K \subset X$ be a compact subset. Let M be a compact C^∞ manifold of dimension d (possibly with boundary) and assume that there exists a C^∞ embedding $\phi : X \to M$. Then there exists a totally real C^∞ embedding $\psi : M \to \mathbb{C}^{m+\ell}$, where $\ell = \max\{\left\lfloor \frac{3d^2}{2} \right\rfloor - m, 0\}$, such that

(i) $\psi \circ \phi = \text{id}$ on K, and
(ii) $\psi(M) = \psi(M) \cup \hat{K}$.

Notice that by a slight abuse of notation we denote the compact set $K \times \{0\} \subset \mathbb{C}^{m+\ell}$ also by the letter K.

Our motivation for proving this result is the following recent result by Izzo and Stout.

Theorem 1.2 (Izzo–Stout [9]). Let M be a compact C^∞ surface (possibly with boundary). Then M embeds into \mathbb{C}^3 as a totally real C^∞ surface Σ such that $\hat{\Sigma} \setminus \Sigma$ is not empty and does not contain any analytic disc.

In the case where M is a torus, Theorem 1.2 was proved by Izzo, Samuelsson Kalm and the second named author [8]. In a recent paper Gupta [4] gave an explicit example of an isotropic torus in \mathbb{C}^3 whose polynomial hull consists only of an annulus attached to the torus. We note that the torus embedded in [8] is also isotropic, the image being the graph of a real valued function on the torus in \mathbb{C}^2.

Date: July 31, 2018.

2010 Mathematics Subject Classification. 32E20.

Key words and phrases. Polynomial Convexity, Totally Real Manifolds.

†Supported by NRC grant no. 240569.

††Supported by the SIR grant “NEWHOLITE - New methods in holomorphic iteration” no. RBSI14CFME.

Part of this work was done during the international research program “Several Complex Variables and Complex Dynamics” at the Center for Advanced Study at the Academy of Science and Letters in Oslo during the academic year 2016/2017.
As a corollary to Theorem 1.1 we prove the following generalization of Theorem 1.2 to every dimension \(d > 1 \).

Corollary 1.3. Let \(M \) be a compact \(C^\infty \) manifold (possibly with boundary) of dimension \(d > 1 \). Then \(M \) embeds into \(\mathbb{C}^{\lfloor \frac{3d}{2} \rfloor} \) as a totally real \(C^\infty \) submanifold \(\Sigma \) such that \(\Sigma \setminus \Sigma \) is not empty and does not contain any analytic disc.

The same result was proved in [8] for manifolds of dimension \(d > 2 \), with dimension of the target space \(2d + 4 \) (and with a better dimension of the target space for certain specific 2-manifolds). Notice that by [7, Theorem 2.1] the dimension \(\lfloor \frac{3d}{2} \rfloor \) is optimal for totally real embeddings of \(d \)-dimensional manifolds, which implies that Corollary 1.3 is optimal.

We emphasize that Theorem 1.1 is a simple consequence of the general fact that any \(C^\infty \) manifold of dimension \(d \) embeds into \(\mathbb{C}^{\lfloor \frac{3d}{2} \rfloor} \) as a totally real submanifold, and the following general genericity result regarding polynomial hulls and totally real embeddings (to be proved in Section 4):

Theorem 1.4. Let \(M \) be a compact \(C^\infty \) manifold (possibly with boundary) of dimension \(d < n \) and let \(f : M \to \mathbb{C}^n \) be a totally real \(C^\infty \) embedding. Let \(K \subset \mathbb{C}^n \) be a compact polynomially convex set. Then for any \(k \geq 1 \) and for any \(\varepsilon > 0 \) there exists a totally real \(C^\infty \) embedding \(f_\varepsilon : M \to \mathbb{C}^n \) such that

1. \(\|f_\varepsilon - f\|_{C^k(M)} < \varepsilon \),
2. \(f_\varepsilon - f = 0 \) on \(f^{-1}(K) \),
3. \(K \cup f_\varepsilon(M) = K \cup f_\varepsilon(M) \).

In the case \(K = \emptyset \), Theorem 1.4 was proved by Forstneric and Rosay for \(d = 2 \) and \(n \geq 3 \), by Forstneric [2] for \(d \leq \frac{2n}{3} \), and by Løw and the second named author [10] for \(d < n \).

To obtain Corollary 1.3 it is crucial that Alexander [1] has constructed a suitable compact set \(K \) in the totally real distinguished boundary of the bidisk in \(\mathbb{C}^2 \) (see Section 2).

2. **Proof of Theorem 1.1 and Corollary 1.3**

In this section we prove Theorem 1.1 and Corollary 1.3 assuming Theorem 1.4 which will be proved in the next section.

We recall first the following result [3, Lemma 5.3]. By generic we mean open and dense in the Whitney \(C^\infty \)-topology.

Lemma 2.1. Let \(M \) be a compact \(C^\infty \) manifold (possibly with boundary) of dimension \(d \). Then a generic \(C^\infty \) embedding \(\psi : M \to \mathbb{C}^{\lfloor \frac{3d}{2} \rfloor} \) is totally real.

Proof of Theorem 1.1: Let \(U' \) be a relatively compact open subset of \(X \) containing \(K \). Set \(U := \phi(U') \), and let \(\psi_1 : \phi(X) \to \mathbb{C}^m \) be the inverse of \(\psi \). Let \(\psi_2 : M \to \mathbb{C}^m \) be a \(C^\infty \) mapping which agrees with \(\psi_1 \) on \(U \). Notice that since \(2(m + \ell) \geq 2d + 1 \), by Whitney’s theorem (see e.g. [5, Theorem 2.13]) a generic \(C^\infty \) mapping from \(M \) to \(\mathbb{C}^{m+\ell} \) is an embedding, and since \(m + \ell \geq \lfloor \frac{3d}{2} \rfloor \), by Lemma 2.1 a generic \(C^\infty \) embedding of \(M \) into \(\mathbb{C}^{m+\ell} \) is totally real. Let \(\psi_3 : M \to \mathbb{C}^{m+\ell} \) be a small perturbation of \(\psi_2 \) which is a totally real \(C^\infty \) embedding.
Let $\chi \in C^0_0(U)$ with $\chi \equiv 1$ in a neighborhood of $\phi(K)$ and $0 \leq \chi \leq 1$. Then if the perturbation ψ_3 was small enough, the mapping from M to $\mathbb{C}^{m+\ell}$ defined as $\psi_4 := \chi \cdot \psi_1 + (1-\chi)\psi_3$ is a totally real C^∞ immersion injective in U. There exists a small C^∞ perturbation $\psi : M \to \mathbb{C}^{m+\ell}$ which is a totally real C^∞ embedding and such that $\psi|_{\phi(K)} = \psi_4|_{\phi(K)}$ (see e.g. [5, Theorem 2.4.3]) where the approximation is in C^0-norm but the proof can be easily adapted to our case) which implies that $K \subset \psi(M)$. Notice that $\psi_4|_{\phi(K)} = \psi_1|_{\phi(K)}$, and thus $\psi \circ \phi = \text{id}$ on K. Since $m + \ell > d$, we can apply Theorem 1.4 with K replaced by \hat{K} and Theorem 1.1 follows.

To prove Corollary 1.3 we need the following result of Alexander:

Theorem 2.2. (Alexander, [1]) The standard torus $T^2 := \{(e^{i\theta}, e^{i\psi}) : \vartheta, \psi \in \mathbb{R}\}$ in \mathbb{C}^2 contains a compact subset K such that $\hat{K} \setminus K$ is not empty but contains no analytic discs. Such a set can be found in every neighborhood of the diagonal in T^2.

Proof of Corollary 1.3: Choose a small annular neighbourhood A of the diagonal in T^2, and let $K \subset A$ be the compact subset given by Theorem 2.2. Define a totally real C^∞ submanifold X of \mathbb{C}^d by

$$X = \{(z_1, z_2, z_3, \ldots, z_d) : (z_1, z_2) \in A, \text{Im}(z_j) = 0 \text{ and } -\varepsilon < \text{Re}(z_j) < \varepsilon \text{ for } j = 3, \ldots, d\},$$

where $\varepsilon > 0$. Now X embeds into (any small portion of) the interior of M. By Theorem 1.1, there exists a totally real C^∞ embedding $\psi : M \to \mathbb{C}^d$ such that $K \subset \psi(M)$ and $\hat{\psi(M)} = \psi(M) \cup \hat{K}$. Recall [12, Theorem 6.3.2] that for a polynomially convex subset H of a totally real C^∞ submanifold the uniform algebra $\mathcal{P}(H)$, consisting of all the functions on H that can be approximated uniformly by polynomials, coincides with the algebra of continuous functions on H. Hence the hull \hat{K} cannot be contained in $\psi(M)$, and the result follows from Theorem 2.2.

3. Proof of the main lemma

For any compact set $K \subset \mathbb{C}^n$ set $h(K) := \overline{K \setminus K}$. We will sometimes denote \hat{K} by $[K]^\circ$.

The proof of the following main lemma is essentially contained in [10, Proposition 6.7] where it is given in the case of C^1-regularity. We give a proof for completeness.

Lemma 3.1. Let M be a compact C^∞ manifold (possibly with boundary) of dimension $d \leq n$ and let $f : M \to \mathbb{C}^n$ be a totally real C^∞ embedding. Let $K \subset \mathbb{C}^n$ be a compact polynomially convex set, and let U be a neighborhood of K. Then for any $k \geq 1$ and for any $\varepsilon > 0$ there exists a totally real C^∞ embedding $f_\varepsilon : M \to \mathbb{C}^n$ such that

1. $\|f_\varepsilon - f\|_{C^k(M)} < \varepsilon$,
2. $f_\varepsilon - f = 0$ in a neighborhood of $f^{-1}(K)$,
3. $K \cup f_\varepsilon(M) \subset U \cup f(M)$.

The following result is proved in [10, Proposition 4]. Recall that a small enough C^1-perturbation of an embedding of a compact manifold is still an embedding (see e.g. [5, Theorem 1.4]).

Proposition 3.2. Let M be a compact C^1 manifold (possibly with boundary) and let $f : M \to \mathbb{C}^n$ be a totally real C^1 embedding. Let $U' \subset U \subset \mathbb{C}^n$ be open sets. Then there exists an open neighborhood Ω of $f(M)$ such that
(1) if $S \subset M$ is closed and $K \subset U'$ is compact, then
$$h(K \cup f(S)) \subset U' \cup \Omega \Rightarrow h(K \cup f(S)) \subset U,$$

(2) if \tilde{f} is a sufficiently small C^1-perturbation of f, then (1) holds with \tilde{f} in place of f.

The following lemma is proved in [10, Corollary 2]

Lemma 3.3. Let $K \subset \mathbb{C}^n$ be a compact subset. Let M be a compact C^1 manifold (possibly with boundary) and let $f : M \to \mathbb{C}^m$ be a totally real C^1 embedding. Let $S \subset M$ be a closed subset. Let U be an open set such that $h(K \cup f(S)) \subset U$.

Then there exists a constant $c > 0$ such that if $\|f - \tilde{f}\|_{C^1(M)} < c$, then $h(K \cup \tilde{f}(S)) \subset U$.

Proof of Lemma 3.1: The proof is in two steps. Let I denote the interval $[0, 1] \subset \mathbb{R}$.

First Step: The first step is proving the lemma in the case $M = I^d$. The proof is by induction on d. Fix a strictly positive $d \in \mathbb{N}$, and assume that the result holds for embeddings of I^{d-1}.

Since K is polynomially convex, it admits fundamental system of open neighborhoods which are Runge and Stein open sets. Thus there exists a Runge and Stein open set $U' \subset \mathbb{C}^n$ such that $K \subset U' \subset U$. Since U' is Runge and Stein, it admits a normal exhaustion by polynomially convex subsets. Hence there exists a polynomially convex set $K' \subset U'$ such that $K \subset \text{int}(K')$.

Let us fix some notation.

(1) for $J \in \mathbb{N}$ and $\alpha \in \mathbb{N}^d$, $0 \leq \alpha_j \leq J - 1$, we denote by I^J_α the cube
$$I^J_\alpha := \left[\frac{\alpha_1}{J}, \frac{\alpha_1 + 1}{J}\right] \times \cdots \times \left[\frac{\alpha_d}{J}, \frac{\alpha_d + 1}{J}\right],$$

(2) for $1 \leq m \leq d$, $0 \leq j \leq J$, we denote by $G^J_{m,j}$ the $(d-1)$-dimensional cube
$$G^J_{m,j} := I \times \cdots \times I \times \left\{\frac{j}{J}\right\} \times I \cdots \times I,$$

(3) we denote by G^J the grid which is the union of all $(d-1)$-dimensional cubes
$$G^J := \bigcup_{m,j} G^J_{m,j},$$

(4) we denote by $G^J(\delta)$ the closed δ-neighborhood of the grid G^J,
$$G^J(\delta) := \{x \in I^d : \text{dist}(x, G^J) \leq \delta\},$$

(5) we denote by $Q^J_\alpha(\delta) \subset I^J_\alpha$ the smaller d-dimensional cube
$$Q^J_\alpha(\delta) := I^J_\alpha \setminus G^J(\delta),$$

(6) we denote by S^J an n-tuple of distinct cubes I^J_α.

We will prove the following statement. There exists a big enough J, a small enough δ and a totally real C^∞ embedding $f_\varepsilon : I^d \to \mathbb{C}^n$ such that

(i) $\|f_\varepsilon - f\|_{C^k(I^d)} < \varepsilon$,

(ii) $f_\varepsilon - f = 0$ in a neighborhood of $f^{-1}(K)$,
(iii) \(f_\varepsilon(I^d_{\alpha}) \cap K \neq \emptyset \Rightarrow f_\varepsilon(I^d_{\alpha}) \subset K',\)
(iv) \(h(K' \cup f_\varepsilon(S^J) \cup f_\varepsilon(G^J(\delta))) \subset U\) for any choice of n-tuple \(S^J\),
(v) for all \(\alpha\) such that \(f_\varepsilon(Q^J_{\alpha}(\delta)) \subset \mathbb{C}^n \setminus K\), there exists an entire function \(g_\alpha \in \mathcal{O}(\mathbb{C}^n)\) such that \(f_\varepsilon(Q^J_{\alpha}(\delta)) \subset \{g_\alpha = 0\} =: Z(g_\alpha),\)
(vi) for all choices of \(n + 1\) different multi-indices \(\alpha^1, \ldots, \alpha^{n+1}\) such that \(f_\varepsilon(Q^J_{\alpha}(\delta)) \subset \mathbb{C}^n \setminus K\) we have \(\bigcap_{1 \leq j \leq n+1} Z(g_{\alpha^j}) = \emptyset\).

Once this is proved, the first step of the proof goes as follows. Assume that
\[q \in [K \cup f_\varepsilon(I^d)].\]

Let \(\mu\) be a representative Jensen measure for the linear functional on \(\mathcal{P}(K \cup f_\varepsilon(I^d))\) defined as the evaluation at \(q\), such that for all entire functions \(g \in \mathcal{O}(\mathbb{C}^n)\) we have
\[\log |g(q)| \leq \int \log |g| d\mu. \tag{3.1}\]

Assume that there exists \(\alpha\) such that \(\mu(f_\varepsilon(Q^J_{\alpha}(\delta))) > 0\) and \(f_\varepsilon(Q^J_{\alpha}(\delta)) \cap K = \emptyset\). By (v) we get that \(\int \log |g_\alpha| d\mu = -\infty\), and by (3.1) we have that \(q \in Z(g_\alpha)\). By (vi), there exists an n-tuple of cubes \(S^J\) such that the measure \(\mu\) is concentrated on the subset
\[K' \cup f_\varepsilon(S^J) \cup f_\varepsilon(G^J(\delta)).\]

It follows that \(q \in [K' \cup f_\varepsilon(S^J) \cup f_\varepsilon(G^J(\delta))]\), and by (iv) we obtain that \(q \in U \cup f_\varepsilon(I^d)\).

We proceed to prove the statement above.

Claim 1: If \(J\) is big enough then
\[h(K' \cup f(S^J)) \subset U' \tag{3.2}\]
for any choice of n-tuple \(S^J\). Moreover, for a fixed big enough \(J\), if \(f_0\) is a sufficiently small \(C^1\)-perturbation of \(f\), then (3.2) holds with \(f_0\) in place of \(f\).

Proof of Claim 1: Let \(U''\) be an open neighborhood of \(K'\) with \(U'' \subset U',\) Let \(\Omega'\) be given by Proposition 3.2 with data \((f, U', U'')\). Assume by contradiction that there is a sequence \((J_t)_{t \in \mathbb{N}}, J_t \rightarrow \infty\) and a sequence \(S^J_t\) of n-tuples such that
\[h(K' \cup f(S^J_t)) \not\subset U'.\]

Let \(I^{J_t}_{\alpha_1(t)}, \ldots, I^{J_t}_{\alpha_n(t)}\) be the cubes in \(S^J_t\). Up to passing to a subsequence we may assume that for any \(1 \leq j \leq n\), the image \(f(I^{J_t}_{\alpha_j(t)})\) converges to a point \(q_j \in M\) as \(t \rightarrow \infty\). Since \(K' \cup \{q_j\}_{1 \leq j \leq n}\) is polynomially convex, there exists a Runge and Stein neighborhood \(V\) of \(K' \cup \{q_j\}_{1 \leq j \leq n}\) such that \(V \subset U'' \cup \Omega'\). For large enough \(t\) we have that \(K' \cup f(S^J_t) \subset V\), which implies \(h(K' \cup f(S^J_t)) \subset U'' \cup \Omega',\) and thus by Proposition 3.2 we have a contradiction.

Since there are only a finite number of n-tuples \(S^J\) for a fixed \(J\), the perturbation claim follows from Lemma 3.3. **End proof of Claim 1.**

Choose \(J\) big enough such that Claim 1 holds and that for all \(\alpha\),
\[f(I^d_{\alpha}) \cap K \neq \emptyset \Rightarrow f(I^d_{\alpha}) \subset \text{int}(K'),\]
and such that for all \(\alpha\) the image \(f(I^d_{\alpha})\) is polynomially convex (this can be obtained by [11, Proposition 4.2]).
Proposition 3.2 with data (f_k) such that $\|f_k\|_{C^k(I_{\alpha}^d)} < \theta$ we have that $g(I_{\alpha}^d)$ stays polynomially convex.

Claim 2: There exists a totally real C^∞ embedding $f_2^k : I^d \to \mathbb{C}^n$ such that

1. $\|f_2^k - f\|_{C^k(I^d)} < \max(\theta, \frac{\eta}{2})$,
2. $f_2^k = f$ in a neighborhood of $f^{-1}(K')$,
3. $h(K' \cup f_2^k(S^J) \cup f_2^k(G^J)) \subset U'$ for any choice of n-tuple S^J.

Moreover, if f_0 is a sufficiently small C^1-perturbation of f_2^k, then (3) holds with f_0 in place of f_2^k.

Proof of Claim 2: Fix an n-tuple S^J. Choose an ordering of the $(d - 1)$-dimensional cubes $(G_{m,j}^i)_{m,j}$ and denote them by G_1, \ldots, G_{ℓ}.

Fix $0 < \eta < 1$ (to be determined later). We will construct inductively a family of totally real C^∞ embeddings $(f_j : I^d \to \mathbb{C}^n)_{0 \leq j \leq \ell}$ such that

1. $\|f_j - f_{j-1}\|_{C^k(I^d)} \leq \eta$,
2. $f_j = f_{j-1}$ in a neighborhood of $f^{-1}(K') \cup S^J \cup \bigcup_{1 \leq i \leq j} G_i$,
3. $h \left(K' \cup f_j(S^J) \cup \bigcup_{1 \leq i \leq j} f_j(G_i)\right) \subset U'$.

If we set $f_0 := f$, then (c) is true by Claim 1. Assume we constructed f_j, where $0 \leq j \leq \ell - 1$. Then by (c) the set $h(K' \cup f_j(S^J) \cup \bigcup_{0 \leq i \leq j} f_j(G_i))$ is compact in U', so there exists a set U''_1 such that $K' \subset U''_1 \subset U'$ satisfying $h(K' \cup f_j(S^J) \cup \bigcup_{1 \leq i \leq j} f_j(G_i)) \subset U''_1$. Let Ω_1 be given by Proposition 3.2 with data (f_j, U', U''_1). Consider the totally real C^∞ embedding $f_j|_{G_{j+1}} : G_{j+1} \to \mathbb{C}^n$. Since

$$[K' \cup f_j(S^J) \cup \bigcup_{0 \leq i \leq j} f_j(G_i)] \subset U''_1 \cup \Omega_1,$$

by the inductive assumption (the result holds for embeddings of I^{d-1}) there exists a totally real C^∞ embedding $\tilde{f}_j|_{G_{j+1}} : G_{j+1} \to \mathbb{C}^n$ such that

1. $\|\tilde{f}_j - f_j\|_{C^k(G_{j+1})}$ is small,
2. $\tilde{f}_j = f_j$ in a neighborhood of $f_j^{-1}(K') \cup S^J \cup \bigcup_{1 \leq i \leq j} G_i$,
3. $h \left(K' \cup \tilde{f}_j(S^J) \cup \bigcup_{1 \leq i \leq j} \tilde{f}_j(G_i) \cup \tilde{f}_j(G_{j+1})\right) \subset U''_1 \cup \Omega_1$.

If $\|\tilde{f}_j - f_j\|_{C^k(G_{j+1})}$ is small enough, then we may extend \tilde{f}_j to a totally real C^∞ embedding $f_{j+1} : I^d \to \mathbb{C}^n$ such that $\|f_{j+1} - f_j\|_{C^k(I^d)} \leq \eta$, which coincides with f_j on $f^{-1}(K') \cup S^J \cup \bigcup_{1 \leq i \leq j} G_i$. By the choice of Ω_1 it follows that

$$h(K' \cup f_{j+1}(S^J) \cup \bigcup_{1 \leq i \leq j+1} f_{j+1}(G_i)) \subset U'.$$

The mapping f_ℓ satisfies Claim 2 for the chosen n-tuple S^J.

We then iterate this argument for every n-tuple S^J (choosing η small enough), and we obtain f_2^k. The perturbation claim follows from Lemma 3.3.
Let Ω be an open neighborhood of $f_{\frac{2}{\varepsilon}}(I^{d})$ given by Proposition 3.2 with data $(f_{\frac{2}{\varepsilon}}, U, U')$.

Claim 3: There exists a $\delta > 0$ such that

$$h(K' \cup f_{\frac{2}{\varepsilon}}(S^J) \cup f_{\frac{2}{\varepsilon}}(G^{J}(\delta))) \subset U$$

(3.3)

for any choice of n-tuple S^J. Moreover, if f_0 is a sufficiently small C^1-perturbation of $f_\frac{2}{\varepsilon}$, then (3.3) holds with f_0 in place of $f_\frac{2}{\varepsilon}$.

Proof of Claim 3: Fix an n-tuple S^J. Since $h(K' \cup f_{\frac{2}{\varepsilon}}(S^J) \cup f_{\frac{2}{\varepsilon}}(G^{J})) \subset U'$, there exists a Runge and Stein neighborhood $V \subset \subset \Omega \cup U'$ of $K' \cup f_{\frac{2}{\varepsilon}}(S^J) \cup f_{\frac{2}{\varepsilon}}(G^{J})$. If $\delta > 0$ is small enough we have that $K' \cup f_{\frac{2}{\varepsilon}}(S^J) \cup f_{\frac{2}{\varepsilon}}(G^{J}(\delta)) \subset V$, and thus $h(K' \cup f_{\frac{2}{\varepsilon}}(S^J) \cup f_{\frac{2}{\varepsilon}}(G^{J}(\delta))) \subset U$. Since the number of n-tuples is finite, we can choose a δ which works for all of them. The perturbation claim follows from Lemma 3.3. *End proof of Claim 3.*

We now claim that we may approximate $f_{\frac{2}{\varepsilon}}$ arbitrarily well in C^k-norm on I^{J}_{α} by holomorphic automorphisms G_{α} of \mathbb{C}^{n}. Granted this for a moment, we proceed as follows. Let χ be a cutoff function with compact support in $\text{int}(I^{J}_{\alpha})$ such that $\chi \equiv 1$ in a neighborhood of $Q^{J}_{\alpha}(\delta)$. Define

$$f_{\alpha}(x) := f_{\frac{2}{\varepsilon}}(x) + \chi(x)(G_{\alpha}(x) - f_{\frac{2}{\varepsilon}}(x)).$$

(3.4)

Since $d < n$, the n-th coordinate of every point in I^{J}_{α} is 0. Hence, if we define g_{α} as the n-th coordinate of G^{-1}_{α}, then for all $x \in Q^{J}_{\alpha}(\delta)$,

$$g_{\alpha}(f_{\alpha}(x)) = 0.$$

(Notice that it is here crucial that $d < n$. If $d = n$, there is no way to “push” cubes into analytic hypersurfaces of \mathbb{C}^{n}.)

Since $f_{\alpha} = f_{\frac{2}{\varepsilon}}$ on $I^{d} \setminus \text{int}(I^{J}_{\alpha})$, the maps f_{α} patch up as α varies among all multi-indices α such that $f_{\frac{2}{\varepsilon}}(Q^{J}_{\alpha}(\delta)) \cap K = \emptyset$, and we obtain an embedding $f_{\varepsilon} : I^{d} \to \mathbb{C}^{n}$ satisfying the properties (i)-(v).

Finally, by the following sublemma, we may assume, possibly having to perturb the automorphisms G_{α} slightly, that the intersection $\bigcap_{1 \leq j \leq n+1} Z(g_{\alpha j})$ of any collection of $n+1$ zero sets is empty. Thus property (vi) is satisfied.

Sublemma 3.4. Let $\{g_{j}\}_{1 \leq j \leq N} \subset \mathcal{O}(\mathbb{C}^{n})$ be a finite collection of non-constant holomorphic functions, and for each $a_{j} \in \mathbb{C}$ set $g^{a_{j}}_{j} := g_{j} - a_{j}$. Then there exists a dense G_{δ} set $A \subset \mathbb{C}^{N}$ such that for each $a \in A$ the following holds: for any collection $\{g^{a_{i_{1}}}_{i_{1}}, \ldots, g^{a_{i_{k}+1}}_{i_{k+1}}\}$ with $i_{j} \neq i_{k}$ if $j \neq k$, \ldots
we have that
\[
\bigcap_{l=1}^{n+1} Z(g_{il}^{a_{il}}) = \emptyset. \tag{3.5}
\]

Proof. Denote by \(\Delta_\delta(p) \subset \mathbb{C}\) the disc of center \(p\) and radius \(\delta\), and by \(\mathbb{B}_R^n \subset \mathbb{C}^n\) the ball of radius \(R\) centered at the origin. Fix \(R > 0\) and fix \(I := (i_1, \ldots, i_{n+1})\) where \(i_j \in \{1, \ldots, N\}\) and \(i_j \neq i_k\) if \(j \neq k\). The result immediately follows by the Baire lemma if we prove that the set
\[
A_{I,R} := \{a \in \mathbb{C}^N : \bigcap_{l=1}^{n+1} Z(g_{il}^{a_{il}}) \cap \mathbb{B}_R^n = \emptyset\}
\]
is dense (it is obviously open). Let thus \(a = (a_1, \ldots, a_N) \in \mathbb{C}^N\) be an arbitrary point. The set \(Z(g_{i_1}^{a_{i_1}}) \cap \mathbb{B}_R^n\) consists of a finite number of irreducible components, each of dimension \(n-1\).

Choosing \(a_{i_2} \in \Delta_\delta(a_{i_2})\) such that \(g_{i_2}^{a_{i_2}}\) is not identically zero on the regular part of any of these components, we get that
\[
Z(g_{i_1}^{a_{i_1}}) \cap Z(g_{i_2}^{a_{i_2}}) \cap \mathbb{B}_R^n \tag{3.6}
\]
has a finite number of irreducible components, each of dimension at most \(n-2\), where we have set \(a_{i_1} = a_{i_1}\). Choosing \(a_{i_3} \in \Delta_\delta(a_{i_3})\) such that \(g_{i_3}^{a_{i_3}}\) is not identically zero on any of these components, and continuing in this fashion, we obtain a collection of points \(\{a_{i_l}\}, l = 1, \ldots, n+1\), such that
\[
\bigcap_{l=1}^{n+1} Z(g_{i_l}^{a_{i_l}}) \cap \mathbb{B}_R^n = \emptyset, \tag{3.7}
\]
and such that \(a_{i_l} \subset \Delta_\delta(a_{i_l})\).

We are thus left to show that we may approximate \(f^x_\alpha\) arbitrarily well in \(C^k\)-norm on \(I^J_\alpha\) by holomorphic automorphisms \(G_{\alpha}\) of \(\mathbb{C}^n\). We say that two smooth totally real polynomially convex embeddings \(f, g: I^J_\alpha \rightarrow \mathbb{C}^n\) are connected if there exists a smooth isotopy of embeddings \((G_t: I^J_\alpha \rightarrow \mathbb{C}^n)_{t \in [0,1]}\) such that \(G_0 = f, G_1 = g\) and such that \(G_t(I^J_\alpha)\) is totally real and polynomially convex for all \(t\). If \((h_k: I^J_\alpha \rightarrow \mathbb{C}^n)_{0 \leq k \leq M}\) is a finite family of smooth totally real polynomially convex embeddings such that \(h_0\) is the identity map \(\text{id}_{I^J_\alpha}\) and \(h_k\) is connected to \(h_{k+1}\) for all \(0 \leq k \leq M - 1\), then by the proof of [2, Main Theorem] it follows that \(h_M\) is approximable by automorphisms.

There exists \(\eta > 0\) small enough such that the embedding \(x \mapsto f^x_\alpha(\eta x)\) defined on \(I^J_\alpha\) can be written as
\[
f^x_\alpha(\eta x) = \rho(\beta(x)),
\]
where \(\beta: I^J_\alpha \rightarrow \mathbb{R}^d\) is the orientation preserving diffeomorphism \(\beta(x) := \pi_{\mathbb{R}^d}(f^x_\alpha(\eta x))\) and where \(\rho\) is a graph map \(\rho(x) := (x, \gamma(x))\), where \(D\gamma(0) = 0\) and \(\gamma\) is \(c\)-Lipschitz with \(c > 0\) small enough to obtain that for all \(t \in [0,1]\) the image of \(\beta(I^J_\alpha)\) via the graph map \(\rho_t(x) := (x, t\gamma(x))\) is totally real and polynomially convex (we use [11, Proposition 4.2]).

We have that
(1) since β is orientation preserving, the identity map id_{I_d} is connected to β via an isotopy
with values in \mathbb{R}^d,
(2) the isotopy $\rho_t(\beta(x))$ connects β to the embedding $x \mapsto f_{\frac{t}{2}}(\eta x)$,
(3) the embedding $f_{\frac{t}{2}}(\eta x)$ is connected to $f_{\frac{t}{2}}(x)$ via the isotopy $f_{\frac{t}{2}}((\eta + t(1-\eta))x)$.

Second Step:

For simplicity we assume that M is without boundary. Let I_1, \ldots, I_N be a cover of M by
closed cubes, such that there is a collection of subcubes $I_0^i \subset \text{int}(I_i)$ which also cover M.
For each i let χ_i be a cutoff function compactly supported in $\text{int}(I_i)$ with $\chi_i \equiv 1$ in a neighborhood
of I_0^i. Let $U_j \subset U_{j+1} \subset U$ be open sets for $j = 1, \ldots, N$, and let Ω be given by Proposition 3.2
for all the data $(f(M), U_{j+1}, U_j)$ with $j = 1, \ldots, N$. We will proceed to perturb the image $f(M)$
cube by cube.

Assume that we have constructed a small C^k-perturbation $f_j : M \to \mathbb{C}^n$ of f such that

$$h(K \cup f_j(\cup_{i=1}^j I_0^i)) \subset U_j$$

(it will be clear from the construction how to construct f_1).

By Step 1 we let $g_{j+1} : I_{j+1} \to \mathbb{C}^n$ be a small C^k-perturbation of f_j such that

$$h(K \cup f_j(\cup_{i=1}^j I_0^i) \cup g_{j+1}(I_{j+1})) \subset \Omega \cup U_j,$$

and g_{j+1} coincides with f_j in a neighbourhood of $\cup_{i=1}^j I_0^i \cup f_j^{-1}(K)$. Defining f_{j+1} by

$$f_{j+1} := f_j + \chi_{j+1}(g_{j+1} - f_j),$$

we obtain

$$h(K \cup f_{j+1}(\cup_{i=1}^{j+1} I_0^i)) \subset U_{j+1}.$$

If all the perturbations were small enough, defining $f_\varepsilon := f_N$ yields the result. \qed

4. **Proof of Theorem 1.4**

Let $\varepsilon > 0$. Let $(U_j)_{j \geq 1}$ be a sequence of open neighborhoods of K such that $U_{j+1} \subset U_j$ for
all $j \geq 1$ and $K = \bigcap_{j \geq 1} U_j$. Set $f_0 := f$. We perturb f_0 inductively using Lemma 3.1, obtaining
a family of totally real C^∞ embeddings $(f_j : M \to \mathbb{C}^n)_{j \in \mathbb{N}}$ such that,

1. for all $j \geq 1$ we have $K \cup f_j(M) \subset U_j \cup f_j(M),$
2. for all $j \in \mathbb{N}$ we have

$$\|f_{j+1} - f_j\|_{C^{k+j}(M)} < \eta_j,$$

where the sequence (η_j) satisfies for all $\ell \in \mathbb{N},$

$$\sum_{j=\ell}^{\infty} \eta_j < \delta_\ell,$$

where $0 < \delta_0 \leq \varepsilon$ is to be chosen and for all $\ell \geq 1$, δ_ℓ is the constant $c(f_\ell, K, U_\ell)$ given
by Lemma 3.3,
3. for all $j \in \mathbb{N}$ we have $f_{j+1} \equiv f_j$ on $f^{-1}(K)$.
The sequence \((f_j)\) clearly converges to a \(C^\infty\) map \(f_\varepsilon : M \to \mathbb{C}^n\) which coincides with \(f\) on \(f^{-1}(K)\), and such that \(\|f - f_\varepsilon\|_{C^k(M)} < \delta_0\). If \(\delta_0\) is small enough, then \(f_\varepsilon\) is a totally real \(C^\infty\) embedding. We claim that for all \(\ell \geq 1\),

\[
K \cup f_\varepsilon(M) \subset U_\ell \cup f_\varepsilon(M).
\]

This follows from Lemma 3.3, since

\[
\|f_\varepsilon - f_\ell\|_{C^1(M)} \leq \sum_{j=\ell}^{\infty} \eta_j < \delta_\ell.
\]

\[\square\]

References

L. Arosio: Dipartimento Di Matematica, Università di Roma “Tor Vergata”, Via Della Ricerca Scientifica 1, 00133, Roma, Italy
E-mail address: arosio@mat.uniroma2.it

E. F. Wold: Department of Mathematics, University of Oslo, Postboks 1053 Blindern, NO-0316 Oslo, Norway
E-mail address: erlendfw@math.uio.no